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Abstract

The time-dependent Biot number in a one-dimensional linear heat conduction problem is obtained from the

solutions of the inverse heat conduction problems of determining boundary heat ¯ux and boundary temperature.
The sequential function speci®cation method with the linear basis function and the assumption of linearly varying
future boundary heat ¯ux or temperature components is used to solve the inverse problem. The expression for Biot
number is found to be a nonlinear function of measured temperatures. The variance in input data is shown to cause

variance and nonlinear bias in estimated Biot number. The method presented o�ers three tunable parameters that
may be used to improve the quality of the solution. # 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

A heat conduction problem in a solid with the initial

and boundary conditions completely speci®ed is a well-

posed problem that can be solved by various analytical

and numerical methods. On the other hand, when the

boundary condition is to be determined from tempera-

ture measurement data inside the solid, the problem is

an ill-posed one known as the inverse heat conduction

problem (IHCP) [1]. Although the analytical solution

of IHCP exists for the case of one-dimensional

problem [2], a numerical method is generally preferable

since it o�ers control over the accuracy and the stab-

ility of the solution. Among the well-known numerical

methods are the space-marching technique [3], the fre-

quency domain adjoint method [4], the molli®cation

method [5], the iterative regularization method [6], the

direct sensitivity coe�cient method [7], and the sequen-

tial function speci®cation method [1]. The aims of

these methods are to obtain a solution that is accurate

and not very sensitive to changes in input temperature

data.

Most of the inverse heat conduction problems that

have been investigated so far are concerned with the

estimation of boundary heat ¯ux. Another interesting

problem that has not yet received as much interest is

the estimation of heat transfer coe�cient. Osman and

Beck [8] treated the problem of estimating time-depen-

dent heat transfer coe�cient in the quenching of a

sphere as a nonlinear parameter estimation problem.

Heat transfer coe�cient was assumed to be a piecewise

constant function of time. The unknown heat transfer

coe�cient parameters were estimated one by one using

the sequential function speci®cation method. Naylor

and Oosthuizen [9] employed the temperature-time

data measured at subsurface locations to determine the

heat transfer coe�cient in a forced convective ¯ow

over a square prism. They expressed the distribution of

heat transfer coe�cient in terms of several piecewise

constant functions. The coe�cients were computed

using an iterative algorithm. Hernandez-Morales et al.
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[10] studied the one-dimensional problem of estimating

the transient heat transfer coe�cient at the surface of

steel bars subjected to quenching using the sequential

function speci®cation method. They found that ®lter-

ing the input data led to improved estimation.

Mehrotra et al. [11] estimated interfacial heat transfer

coe�cient in solidi®cation of a molten metal on a

metal substrate. Their transient one-dimensional

problem was divided into a direct region and an in-

direct region. The solution for the direct region was

obtained using a conventional method. The Burggraf

solution [2] was then used to compute the temperature

and heat ¯ux at the interface between the molten metal

and the substrate, from which the heat transfer coe�-

cient could be determined in a straightforward manner.

Xu and Chen [12] studied the steady-state nonlinear

problem of determining the heat transfer coe�cient in

two-phase mixture ¯ow in an inclined tube. Their al-

gorithm was a simple iterative procedure. Most

recently, Martin and Dulikravich [13] employed the

boundary element method to set up the inverse pro-

blem of determining boundary heat ¯ux and boundary

temperature simultaneously in a steady-state multidi-

mensional problem. The single value decomposition

method was then used to obtain stabilized solutions

for boundary heat ¯ux and boundary temperature,

from which heat transfer coe�cient was determined.

In this paper, an algorithm for estimating time-
dependent heat transfer coe�cient for a one-dimen-

sional linear inverse heat conduction problem is pro-
posed. The method used is the sequential function
speci®cation method with the linear basis function and

the assumption of linearly varying future boundary
heat ¯ux (or temperature) components. Recent results
by Chantasiriwan [14] showed that this method yielded
better estimates of boundary condition than the well-

known sequential function speci®cation method [1].
Hence, it is expected that the estimation of heat trans-
fer coe�cient should perform better with the new

method as well. The following sections will describe
the matrix formulation of the algorithm, which will fa-
cilitate computer implementation. The method for ana-

lyzing the accuracy and stability of the estimate will
then be described. Sample results and discussion of
how to improve the estimate will follow. Finally, the

conclusions that can be drawn from this paper will be
given.

2. Mathematical formulation of the problem

The problem to be considered is shown in Fig. 1. A
one-dimensional object is subjected to unknown time-
dependent heat transfer coe�cient at one end whereas

Nomenclature

A response vector
B Biot number
C response vector

cp heat capacity
D coe�cient matrix
E( y ) expected value of random variable y

f probability density distribution function
h heat transfer coe�cient
L length

l, m dummy indices
n the number of Biot number components

to be determined
p ratio of time step for estimated Biot

number components to time step for
temperature measurements

q boundary heat ¯ux

r future-time parameter
S transformation matrix
T temperature

T0 initial temperature
T1 ambient temperature
t time

Var( y ) variance of random variable y

x location
x0 sensor location.

Greek symbols

a (i )
j coe�cient that relates estimated bound-

ary heat ¯ux component to measured
temperature

b (i )
j coe�cient that relates estimated bound-

ary temperature to measured tempera-
ture

Dd deterministic bias

Dn nonlinear bias
e temperature measurement error
c response function

k thermal conductivity
y boundary temperature
r density

s 2 variance of temperature measurements
c response function.

Subscripts and superscripts
i, j, k, l,m indices.
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the other end is insulated. The ambient temperature is
assumed constant throughout the time period con-
sidered. The temperature measurement is made at a

distance from the boundary of unknown heat transfer
coe�cient. The measurement data along with the
known geometrical and thermophysical data give rise
to the inverse heat conduction problem, which can be

mathematically described by the following governing
equation, initial condition, and boundary condition.

rcp
@T 0�x 0, t 0�

@ t 0
� k

@ 2T 0�x 0, t 0�
@x 02

�1�

T 0�x 0, 0� � T0 �2�

@T 0�x 0, t 0�
@x 0

����
x 0�L
� 0 �3�

Temperature measurements at sensor location x '0,
which is between 0 and L, are available at a regular
time interval.

T 0�x 00, iDt 0� � T 0 i �4�

The heat transfer coe�cient at the convective bound-
ary x '=0 is to be determined. The de®nition of h(t ') is
given by

ÿk@T
0�x 0, t 0�
@x 0

����
x 0�0
� h�t 0��T1 ÿ T 0� �5�

De®ne dimensionless variables x � x 0=L,
t � kt 0=rcpL

2, T � �T 0 ÿ T0�=�T1 ÿ T0�, and
B�t� � h�t 0�L=k. Eqs. (1)±(5) can be rewritten in dimen-
sionless forms.

@T�x, t�
@ t

� @ 2T�x, t�
@x 2

�6�

T�x, 0� � 0 �7�

@T�x, t�
@x

����
x�1
� 0 �8�

T�x 0, iDt� � Ti �9�

ÿ@T�x, t�
@x

����
x�0
� B�t��1ÿ T � �10�

The goal of the IHCP solution is to determine B(t ).
Instead of devising an algorithm to determine B(t )
directly, it is more convenient to estimate boundary

heat ¯ux q(t ) and boundary temperature y(t ) at x = 0
from Eqs. (6)±(9), and use them to obtain the ex-
pression for B(t ).

3. Determination of boundary heat ¯ux

The expression for boundary heat ¯ux into the
object is

q�t� � ÿ@T�x, t�
@x

����
x�0

�11�

Chantasiriwan [14] described a sequential function

speci®cation algorithm for estimating q(t ). The algor-
ithm makes use of piecewise linear function in estimat-
ing boundary heat ¯ux component by component. The

solution is stabilized by employing future-time tem-
perature measurements as input data, and assuming
that heat ¯ux components vary linearly. A distinctive

feature of that algorithm and the conventional sequen-
tial function speci®cation algorithm [1] is the presence
of future-time parameter r, which is related to the
number of future-time measurements used as input

data. This parameter acts as a stabilizing parameter in
that the solution becomes more stable as r increases.
However, that algorithm is limited to cases in which

the time step of temperature measurements equals the
time step of the estimated heat ¯ux components.
Because more input data will probably lead to a more

stable solution, it may be advantageous to allow the
former to be smaller than the latter. In the algorithm
to be used in this paper, the time step of temperature
measurement is Dt, and the time step of the estimated

heat ¯ux components is pDt, where p is a positive inte-
ger. The revised formulation for the sequential func-
tion speci®cation algorithm will now be described.

The `current' heat ¯ux component, q (i ) (1 R i R n ),
is estimated using rp `future' temperature measure-
ments, T(i ÿ 1)p + 1, T(i ÿ 1)p + 2, . . . ,T(i+r ÿ 1)p. It is

assumed that the basis function of the boundary
heat ¯ux components is the piecewise linear
function and that future heat ¯ux components vary lin-

Fig. 1. One-dimensional inverse heat conduction problem to

be solved for h(t ').
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early (see Fig. 2.) For i ÿ 1 R k R i+r ÿ 2 and
1 R m R p, temperatures at x0 are related to boundary

heat ¯ux components as follows.

Tkp�m �
Xiÿ1
j�1

q� j�

pDt
�f�x 0,

��kÿ j� 1�p�m�Dt� ÿ 2f�x 0,

��kÿ j �p�m�Dt� � f�x 0,

��kÿ jÿ 1�p�m�Dt�� �
Xkÿi�1
j�0

q�i�j �

pDt
�f�x 0,

��kÿ iÿ j� 1�p�m�Dt� ÿ 2f�x 0,

��kÿ iÿ j �p�m�Dt� � f�x 0,

��kÿ iÿ jÿ 1�p�m�Dt��

�12�

where

c�x 0, t� �

8>><>>:
t2

2
� t

�
x 2

2
ÿ x 0 � 1

3

�
ÿ 2

X1
m�1

cos�mpx 0�
�mp�4 �1ÿ eÿm

2p2t�, for tr0

0, for t<0

�13�

is the temperature response at x=x0 to the heat con-
duction problem described by Eqs. (6)±(8) and the

condition that the linearly increasing heat ¯ux having
unity slope is applied at x = 0. Since it is assumed
that future heat ¯ux components q (i + 1), q (i + 2), . . . ,

q (i+r ÿ 1) vary linearly, q (i+l ) can be expressed in
terms of q (i ) and q (i ÿ 1):

q�i�l � � �l� 1�q�i � ÿ lq�iÿ1� �14�
for 1 R l R r ÿ 1. Now, substitute Eq. (14) into (12),
and simplify the result.

Tkp�m � q�i �

pDt
f�x 0,

��kÿ j� 1�p�m�Dt� � q�iÿ1�

pDt
�f�x 0,

��kÿ i� 2�p�m�Dt� ÿ 2f�x 0,

��kÿ i� 1�p�m�Dt�� �
Xiÿ2
j�1

q� j�

pDt
�f�x 0,

��kÿ j� 1�p�m�Dt� ÿ 2f�x 0,

��kÿ j �p�m�Dt� � f�x 0, ��kÿ jÿ 1�p�m�Dt��

�15�

Because q (i ÿ 1), q (i ÿ 2), . . . , q(1) are known from pre-
vious calculations, Eq. (15) represents an overdeter-
mined system of linear algebraic equations with q (i ) as

the only unknown for the current calculation. Let us
de®ne the following vectors and matrices:

T � �T1 T2 . . . T�n�rÿ1�p�T

A � 1

pDt
�f�x 0, Dt� f�x 0, 2Dt� . . . f�x 0, rpDt��T

C�1� � 1

pDt

266664
f�x 0, � p� 1�Dt� ÿ 2f�x 0, Dt�
f�x 0, � p� 2�Dt� ÿ 2f�x 0, 2Dt�

..

.

f�x 0, �r� 1�pDt� ÿ 2f�x 0, rpDt�

377775

C�i � � 1

pDt

266664
f�x 0, �ip� 1�Dt� ÿ 2f�x 0, ��iÿ 1�p� 1�Dt� � f�x 0, ��iÿ 2�p� 1�Dt�
f�x 0, �ip� 2�Dt� ÿ 2f�x 0, ��iÿ 1�p� 2�Dt� � f�x 0, ��iÿ 2�p� 2�Dt�
..
.

f�x 0, �i� r�pDt� ÿ 2f�x 0, �i� rÿ 1�pDt� � f�x 0, �i� rÿ 2�pDt�

377775
for 2 R i R n ÿ 1, and

S�i � �

266666664

0 0 . . . 0
0 0 . . . 0

..

. ..
. . .

. ..
.

0 0 . . . 0|������������{z������������}
�iÿ1�p columns

�������������

1 0 . . . 0
0 1 . . . 0

..

. ..
. . .

. ..
.

0 0 . . . 1|�������������{z�������������}
rp columns

�������������

0 0 . . . 0
0 0 . . . 0

..

. ..
. . .

. ..
.

0 0 . . . 0|�����������{z�����������}
�nÿi �p columns

377777775

9>>>>>>>>=>>>>>>>>;
rp rows
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Fig. 2. Pictorial representation of the sequential function spe-

ci®cation algorithm.

for 1 R i R n. Eq. (15) can now be rewritten as a
matrix equation:

S�i �T � Aq�i � �
Xiÿ1
k�1

C�iÿk�q�k� �16�

It is useful to express the unknown q (i ) in terms of all

other quantities.

q�i � � �ATA�ÿ1AT

"
S�i �Tÿ

Xiÿ1
k�1

C�iÿk�g�k�
#

�17�

Furthermore, let

q�i � � D�i �T �18�
The coe�cient matrix D(i ), which relates the unknown

heat ¯ux component q (i ) to known temperature
measurement data, T1, T2, . . . , T(n+r ÿ 1)p, can be
found from Eqs. (17) and (18).

D�i � � �ATA�ÿ1AT

"
S�i � ÿ

Xiÿ1
k�1

C�iÿk�D�k�
#

�19�

Knowledge of D(i ) allows us to write q (i ) in terms of
T1, T2, . . . , T(n+r ÿ 1)p.

q�i � �
X�n�rÿ1�p
k�1

a�i �k Tk �20�

4. Determination of boundary temperature

The expression for boundary temperature is

y�t� � T�0, t� �21�

Let c(x0, t ) be the temperature response at x=x0 to
the heat conduction problem described by Eqs. (6)±(8)

and the condition that the linearly increasing tempera-
ture having unity slope is applied at x = 0. The ex-
pression for c(x0, t ) is

c�x 0, t� �

8>><>>:
tÿ 2

X1
m�1

sin��mÿ 0:5�px 0�
��mÿ 0:5�p�3 �1ÿ eÿ�mÿ0:5�

2p2t�, for tr0

0, for t<0

�22�

With the replacement of f(x0, t ) by c(x0, t ) in the ex-
pressions for A and C(i ), the procedure described pre-

viously can be used to determine boundary
temperature y (i ) as a function of temperature measure-
ment data.

y�i � �
X�n�rÿ1�p
k�1

b�i �k Tk �23�

5. Determination of time-dependent Biot number

Once q (i ) and y (i ) have been determined, B (i ) can be
obtained from

B �i � � q�i �

1ÿ y�i �
�24�

It is interesting to note that B (i ) is a nonlinear function
of measured temperatures,

B �i � �

X�n�rÿ1�p
k�1

a�i �k Tk

1ÿ
X�n�rÿ1�p
k�1

b�i �k Tk

�25�

whereas q (i ) and y (i ) are linear functions of tempera-
tures. Hence, the evaluation of statistical errors in B (i ),
resulting from errors in temperature measurement, is
more complicated than the evaluation of statistical

errors in q (i ) and y (i ).
It is useful to make the following statistical assump-

tions regarding temperature measurement errors [15].

1. Additive errors: Tj=Tj+ej
2. Zero mean errors: E(ej)=0
3. Constant variance: Var(ej)=s 2

4. Uncorrelated errors: E(ejek)=0 if j$k
5. Normal probability distribution for errors
6. Nonstochastic independent variable

S. Chantasiriwan / Int. J. Heat Mass Transfer 42 (1999) 4275±4285 4279



As a result of these assumptions, the probability den-
sity function for errors is

f �ej � � 1

s
������
2p
p exp

"
ÿ 1

2

�
ej
s

�2
#
, ÿ1<ej<1 �26�

In inverse heat conduction problem of estimating
boundary heat ¯ux or boundary temperature, the qual-

ity of the solution is determined by two measures: the
deterministic bias and the variance of the solution.
Deterministic bias represents the di�erence between the

estimated solution and exact solution when tempera-
ture measurements are error-free. The deterministic
biases for q (i ) and y (i ) may be de®ned, respectively, as

Dd, q �
�������������������������������������������������
1

n

Xn
i�1
�q�ipDt� ÿ E�q�i ���2

s
�27�

and

Dd, y �
�������������������������������������������������
1

n

Xn
i�1
�y�ipDt� ÿ E�y�i ���2

s
�28�

where

E�q�i �� �
X�n�rÿ1�p
k�1

a�i �k �Tk �29�

and

E�y�i �� �
X�n�rÿ1�p
k�1

b�i �k �Tk �30�

are the expected values of the estimated boundary heat
¯ux component and the estimated boundary tempera-
ture component. Thus, the deterministic bias depends

on the solution algorithm, but not the statistical errors
present in actual input data. On the other hand, the
variance of the solution is a function of the variance of

input data. As a consequence of the above assump-
tions regarding temperature measurement errors, the
variances of boundary heat ¯ux and boundary tem-

perature are, respectively,

Var�q�i �� � s2
X�n�rÿ1�p
k�1
�a�i �k �2 �31�

and

Var�y�i �� � s2
X�n�rÿ1�p
k�1
�b�i �k �2 �32�

6. Statistical errors in estimated Biot number

De®ne average Biot number component as

�B
�i � �

X�n�rÿ1�p
k�1

a�i �k �Tk

1ÿ
X�n�rÿ1�p
k�1

b�i �k �Tk

�33�

Taylor series expansion for B (i ) yields

B �i � � �B
�t� �

X
j

@B �i �

@Tj

�����
�T j

ej � 1

2

X
j, k

@ 2B �i �

@Tj@Tk

�����
�T j , �Tk

ejek

� 1

6

X
j, k, l

@ 3B �i �

@Tj@Tk@Tl

�����
�T j, �T k , �T l

ejekel

� 1

24

X
j, k, l, m

@ 4B �i �

@Tj@Tk@Tl@Tm

�����
�T j, �Tk , �T l , �Tm

ejekelem

� � � � �34�

where each index in above summations and sum-
mations to follow runs from 1 to (n+r ÿ 1)p. The ex-
pressions for derivatives of B (i ) are given below.

@B �i �

@Tj
� a�i �j � B �i �b�i �j 

1ÿ
X
k

b�i �k Tk

! �35�

@ 2B �i �

@Tj@Tk
� b�i �j a�i �k � b�i �k a�i �j � 2B �i �b�i �j b�i �k 

1ÿ
X
k

b�i �k Tk

!2
�36�

@ 3B �i �

@Tj@Tk@Tl
� 1 

1ÿ
X
k

b�i �k Tk

!3
�b�i �j b�i �k a�i �l

� b�i �j b�i �l a�i �k � b�i �k b�i �l a�i �j

� b�i �k b�i �j a�i �l � b�i �l b�i �j a�i �k

� b�i �l b�i �k a�i �j � 6B �i �b�i �j b�i �k b�i �l � �37�
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@ 4B �i �

@Tj@Tk@Tl@Tm
� 1 

1ÿ
X
k

b�i �k Tk

!4
�b�i �j b�i �k b�i �l a�i �m

� b�i �j b�i �k b�i �m a�i �l � b�i �j b�i �l b�i �k a�i �m � b�i �j b�i �l b�i �m a�i �k
� b�i �j b�i �m b�i �k a�i �l � b�i �j b�i �m b�i �l a�i �k � b�i �k b�i �j b�i �l a�i �m

� b�i �k b�i �j b�i �m a�i �l � b�i �k b�i �l b�i �j a�i �m � b�i �k b�i �l b�i �m a�i �j

� b�i �k b�i �m b�i �j a�i �l � b�i �k b�i �m b�i �l a�i �j � b�i �l b�i �j b�i �k a�i �m
� b�i �l b�i �j b�i �m a�i �k � b�i �l b�i �k b�i �j a�i �m � b�i �l b�i �k b�i �m a�i �j

� b�i �l b�i �m b�i �j a�i �k � b�i �l b�i �m b�i �k a�i �j � b�i �m b�i �j b�i �k a�i �l
� b�i �m b�i �j b�i �l a�i �k � b�i �m b�i �k b�i �j a�i �l � b�i �m b�i �k b�i �l a�i �j

� b�i �m b�i �l b�i �j a�i �k � b�i �m b�i �l b�i �k a�i �j � 24b�i �j b�i �k b�i �l b�i �m �
�38�

Expected value for B (i ) is given by

E�B �i �� �E� �B
�i �� �

X
j

@B �i �

@Tj

�����
�T j

E�ej �

� 1

2

X
j, k

@ 2B �i �

@Tj@Tk

�����
�T j, �T k

E�ejek�

� 1

6

X
j, k, l

@ 3B �i �

@Tj@Tk@Tl

�����
�T j, �Tk , �T l

E�ejekel�

� 1

24

X
j, k, l, m

@ 4B �i �

@Tj@Tk@Tl@Tm

�����
�T j, �T k, �T l, �Tm

E�ejekelem� � � � �
Note that, in addition to the ®rst moment of ej, which
is the zero mean, and the second moment of ej, which
is the variance, the right hand side contains the third

moment and the fourth moment of ej. With the density
distribution function f(ej) given in Eq. (26), they can be
simply evaluated.

E�e3j � �
�1
ÿ1

e3j f �ej � dej � 0 �40�
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�1
ÿ1

e4j f �ej � dej � 3s4 �41�

Hence, the second term on right hand side of Eq. (39)
vanishes. As a consequence of the zero correlation
between measurement errors, the fourth term also

vanishes. The third and ®fth terms can be rewritten as
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Expected value for B (i ) can now be expressed in terms
of temperature measurement variance s 2.
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It is interesting to note that variance in measurement
errors will cause the expected value, E(B (i )), of the
estimated Biot number component to deviate from the

true average value, B (i ), of the estimated Biot number
component. The di�erence between E(B (i )) and B (i )

may be called the nonlinear bias D(i )
n . If terms of order

O(s 6) and higher are neglected,

D�i �n � E�B �i �� ÿ �B
�i � � s2
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In the estimation of boundary heat ¯ux or boundary

temperature, where the dependence on measured tem-
peratures is linear, nonlinear bias is zero. However, in
a nonlinear estimation such as the problem considered

here, nonlinear bias cannot be ignored unless variance
of measurement errors is negligible.
The variance of B (i ) can be determined from the fol-

lowing de®nition.

Var�B �i �� � E��B �i ��2� ÿ �E�B �i ���2 �46�

The right-hand side of Eq. (46) will now be evaluated
term by term.
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Substitute Eqs. (48) and (49) into (46), and retain terms of order O(s 2) and O(s 4).
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7. Results and discussion

Let the Biot number distribution be described by the
following function:

B�t� �
8<: 2t, 0Rt<0:5
2�1ÿ t�, 0:5Rt<0:75
0:5, 0:75RtR1

�51�

The direct problem, described by Eqs. (6)±(8) and (10),

is solved by the explicit ®nite-di�erence method with
uniform grid, Dx = 0.01, and Dt=Dx 2/6. This choice
of Dt results in the solution that is accurate to fourth

order in Dx. An inverse heat conduction problem can
be constructed using Eqs. (6)±(9). The temperature
measurements at x0=1 in Eq. (9) are obtained from
the solution to the direct problem. The inverse

problem is then solved for Biot number components
using the algorithm described above. The quality of
the solution can readily be determined since the exact

solution is known.
The quality of the estimation depends on D(i )

n (non-
linear bias), Var(B (i )) (variance), and Dd,B (determinis-

tic bias). The deterministic bias may be de®ned as

Dd, B �
���������������������������������������������
1

n

Xn
i�1
�B�ipDt� ÿ �B

�i ��2
s

�52�

where B(t ) is given by Eq. (51), and B(i ) is the
expected value of estimated Biot number at time ipDt
when the variance (s 2) of input data is zero. There are
three tunable parameters in the present method, n, r,
and p. The e�ects of n on the quality of the solution

are quite predictable. Hence, the number of n is set at
50, and only the e�ects of r and p on the solution will
be considered.
Fig. 3 shows the variations of D(i )

n and Var(B (i ))

with i for p= 1, r = 20, and s 2=0.01. In general,
both nonlinear bias and variance vary from component
to component. For this particular form of B(t ), both

D(i )
n and Var(B (i )) reach maximum at i=n. To com-

pare results obtained with di�erent p and r, it is su�-
cient to compare maximum D(i )

n and Var(B (i )).

The future-time parameter r acts as a stabilizing par-
ameter in the sequential function speci®cation method.
This is apparent from Table 1, where it is shown that
increasing r, while keeping p constant, results in a

more stable solution (lower maximum variance), but a
less accurate one (higher deterministic bias). It is
interesting to note that a more stable solution also has

lower maximum nonlinear bias. When p is increased,
and r is kept constant, Table 2 shows that variance,
nonlinear bias, and deterministic bias all decrease. This

means that, with the same number of Biot number
components to be estimated, taking more measure-
ments at one sensor location can lead to a more stable

and accurate solution. Although the accuracy of the

solution does not appear to improve much with p, the
solution becomes noticeably more stable when p is

increased. However, one should be cautioned that
when p becomes too large, the time step for tempera-

ture measurements may be too small, causing corre-
lation among di�erent measurements, which will

probably invalidate the above conclusion.
Nevertheless, stabilizing the solution without deterio-
rating its accuracy by letting p equal to 2 or 3 is worth

taking into consideration when designing an exper-
iment since it is less costly and more convenient than

increasing the number of sensors.
In Fig. 4, three di�erent plots of E(B (i )) obtained

with s 2=0, 0.005, and 0.01 are compared with exact
Biot number function. The parameters used in obtain-

ing these results are n = 50, r= 12, p = 1, and x0=1.
It can be seen that, without taking nonlinear bias into

consideration, the quality of estimated Biot number
components is expected to worsen as the variance of

temperature measurements increase. This is in contrast
with the estimation of boundary heat ¯ux or boundary

temperature, where the expected value of the solution

Fig. 3. Variations of variance and nonlinear bias of estimated

Biot number components. Calculations were performed using

x0=1.0, n= 50, r= 12, p= 1, and s 2=0.01.

Fig. 4. Comparison between the expected values of estimated

Biot number components at three di�erent s 2 and the exact

Biot number distribution. Calculations were performed using

x0=1.0, n= 50, r= 12, and p = 1.
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does not depend on the variance of temperature
measurements.

Obviously, it is desirable to have as small s 2 as
possible. From the relation between Ti and T 'i, one can
see that the variance of actual temperature measure-

ment Ti can be related to the variance of dimensionless
temperature T 'i via the relation

Var�Ti � � s2 � Var�T 0 i �
�T1 ÿ T0�2

�53�

Thus, besides decreasing the variance of actual tem-

perature measurement, increasing the di�erence
between the ambient and the initial temperatures will
also result in less variance in estimated B (i ).

8. Conclusions

The solution to the one-dimensional inverse heat
conduction problem of estimating time-dependent heat
transfer coe�cient has been presented. Estimations of

boundary heat ¯ux and boundary temperature are per-
formed by using the sequential function speci®cation
method with piecewise linear basis functions and the

assumption of linearly varying boundary heat ¯ux or
boundary temperature components. They are then

used to obtain the solution for Biot number. It is
found that, in addition to variance and deterministic
bias, the solution is characterized by nonlinear bias,

which results from the nonlinear dependence of the
solution on measured temperatures. If certain statisti-
cal assumptions regarding the measurement errors are

made, it has been shown that variance and nonlinear
bias can be expressed as functions of variance of tem-
perature measurements. For a given number of Biot

number components to be estimated, the method of
solution o�ers two tunable parameters. Whereas an
increase in parameter r results in decreasing variance,
decreasing nonlinear bias, and increasing deterministic

bias, an increase in parameter p results in decreasing
variance, decreasing nonlinear bias, and slightly
decreasing deterministic bias.
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Table 1

Variations of maximum variance, maximum nonlinear bias, and deterministic bias with parameter r (n= 50, p= 1, x0=1.0,

s 2=0.01)

r [Var(B (i ))]max [D(i )
n ]max Dd,B

10 7.02139 0.83771 0.01775

11 3.07827 0.43058 0.02202

12 1.57819 0.25020 0.02676

13 0.90504 0.15850 0.03178

14 0.56385 0.10705 0.03696

15 0.37418 0.07595 0.04232 l

16 0.26093 0.05603 0.04792 l

17 0.18936 0.04266 0.05381

18 0.14195 0.03334 0.06005

19 0.10929 0.02664 0.06663

20 0.08605 0.02168 0.07352

Table 2

Variations of maximum variance, maximum nonlinear bias, and deterministic bias with parameter p (n= 50, r = 12, x0=1.0,

s 2=0.01)

p [Var(B (i ))]max [D(i )
n ]max Dd,B

1 1.57819 0.25020 0.02676

2 0.78634 0.13100 0.02573

3 0.51912 0.08846 0.02536

4 0.38661 0.06674 0.02518

5 0.30775 0.05356 0.02506
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